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Hadronic Wave Function at Low-x
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Major challenge since discovery of QCD:
What is the structure of hadrons in the high-energy limit?
What are the dynamical degrees of freedom governing it?

geometric scaling

ln x

non-perturbative region/confinement

ln
 Q
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Q2
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saturation

JIMWLK
BK
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BFKL

αs <<  1

αs ~ 1

CGC emerged as best candidate to 
approximate QCD in saturation regime
• practical applicability
• phenomenological success

From HERA:
• Glue dominates for x < 0.1
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• It’s not a needle in the haystack but should manifests itself 
when studying probes that are sensitive to glue at low-x 

• Required: high energy to reach saturation regime s~1/x
‣ ep: need energies beyond HERA



Nuclei as Amplifiers of Saturation Effects

4

Enhancement of QS with A ⇒ 
saturation regime reached at 
significantly lower energy in nuclei
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predictions differ 
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17 × √s



The Pre-EIC Era
Plot has more 
dimensions:
• Statistics 
‣ typically low, large 

bins, no multi-
differential studies

• Breadth of 
Measurements
‣ mostly inclusive
‣ often no 

comprehensive set 
of measurements 
(incl., SIDIS, excl., 
diffractive, ...)

5

Recall:
‣ 5+100 GeV   ⇒ √s ~ 45 GeV
‣ 10+100 GeV ⇒ √s ~ 63 GeV
‣ 15+100 GeV ⇒ √s ~ 78 GeV
‣ 20+100 GeV ⇒ √s ~ 90 GeV
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Pre-EIC: p+A at RHIC and LHC

2→2 process

RHIC: need overlap with forward physics (y~4)
LHC: low pT: overlap with central region (y~0)

Studying Saturation:



Pre-EIC: p+A at RHIC and LHC

• Probe has structure as 
complex as the “target”

• More direct information on the 
response of a nuclear medium 
to gluon probe 

• Soft color interactions before 
the collision can alter the 
nuclear wave function and 
destroy universality of parton 
properties (break factorization)

p

p/A

• Point-like probe
• Dominated by single photon 

exchange ⇒ no direct color 
interaction ⇒ preserve the 
properties of partons in the 
nuclear wave function

• High precision & access to 
partonic kinematics

• Nuclei always “cold” nuclear 
matter (CNM)

p/A

Electron-Hadron (DIS)Hadron-Hadron



d+Au at RHIC: Forward-Forward Correlations
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d+Au at RHIC: Forward-Forward Correlations

• Striking broadening in 
central dAu of away-
side compared to pp 
and peripheral dAu

• Experimentally difficult 
due to large 
backgrounds 

• No handle on parton 
kinematics x, Q2

8
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See also PHENIX, Phys. Rev. Lett. 107, 172301 (2011) 



d+Au at RHIC: Forward-Forward Correlations

9

• CGC calculations complex but big improvements recently
‣ CGC provides good description

• Away-side peak cannot be described in leading-twist collinear 
factorization framework

• Most striking evidence for saturation to-date

no absolute 
normalization due to 
exp. backgrounds



p+A at LHC: Pinpointing the CGC?
• First long p+Pb run in Spring 2013
• Expectations:

‣ No final state effects other than usual CNM effects
‣ Absence of QGP “signatures”
‣ Saturation effects visible in bulk matter (low-x, low-pT), 

pronounced and clearly at forward rapidities

10
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CGC models (mostly based 
on kT factorization) describe 
multiplicity in p+Pb quite 
well 

Similar predictions at η = 0

• Findings:
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Classical QGP signature:
Jet quenching

p+Pb: No suppression at 
high-pT observed for
• Hadron Spectra 

• Findings:
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Classical QGP signature:
Jet quenching

p+Pb: No suppression at 
high-pT observed for
• Hadron Spectra 
• Jets
• Heavy Flavor Mesons

Absence of Final State
Effects ?
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• Findings:



p+A at LHC: Along Came the Ridge
• Structure observed first in heavy-ion collisions
• Two-particle correlations at small relative azimuth Δφ~0, which 

extends over at least several units of relative rapidity Δη
• Particles separated by a large Δη are causally disconnected and 

cannot be correlated, unless they produced early

11

Explanation: Initial spatial distribution and fluctuations in hot
QCD matter. Possible explanation in “Glasma” picture. (Hydrodynamics 
w/o initial spatial correlation does’t create a ridge.)

CMS: Pb-Pb



p+A at LHC: Along Came the Ridge
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• Weaker ridge observed in pp in high multiplicity events 
‣ Consistent with strong-color-field picture
‣ CGC explanation of  ridge 

๏ e.g.: Dusling et al. Nucl.Phys. A836 (2010) 159-182



p+A at LHC: Along Came the Ridge

12

• CMS & ALICE confirm substantial ridge structure in p-Pb
‣ Absence of final state collective flow ⇒ explained by CGC 

momentum correlations same as in pp
‣ Presence of collective final state effects ⇒ p+A ridge is result 

from hydrodynamic evolution



p+A at LHC: Along Came the Flow
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Tim Schuster - ALICE two-particle correlations

p-Pb 5.02TeV! ! PID v2{2PC,sub}

• v2{2PC,sub} in p-Pb

- after removing the jet-like 
correlations, the PID structures 
become more clear

- mass ordering at low pT

- crossing at pT"2GeV/c

• Comparison to Pb-Pb

- similar qualitative features
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p-Pb
• Collective flow (v2,3) observed 
• Strength similar to Pb-Pb
• Suggestive of final-state 

collective effects
RHIC d+Au
• PHENIX observes flow (v2) and 

ridge. Difference to STAR 
needs to be resolved. 

‣ Also d+A vs. p+A
CGC
• Latest calculations show that 

flow (v2,3) is produced as well
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Still too soon to make definitive 
statement regarding CGC vs 
final-state collectivity

p-Pb
• Collective flow (v2,3) observed 
• Strength similar to Pb-Pb
• Suggestive of final-state 

collective effects
RHIC d+Au
• PHENIX observes flow (v2) and 

ridge. Difference to STAR 
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‣ Also d+A vs. p+A
CGC
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Despite LHC’s high energy and low-x reach, the EIC is not 
only relevant but absolutely essential to understanding QCD in 
the saturation regime.     In fact the understanding of p+A and 
A+A results at LHC might depend on it.



eA at EIC: Unique Key Measurements (I)
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Measurement of structure function F2, FL and their characteristic 
A dependence at down to x ~ 3×10-4

A¹⁄³ A¹⁄³

rcBK
EPS09 (CTEQ)

Q2 = 2.7 GeV2, x = 10-3Q2 = 2.7 GeV2, x = 10-3

rcBK
EPS09 (CTEQ)

stat. errors enlarged (× 50)
sys. uncertainty bar to scale

Cu AuSi

Beam Energies  A ∫Ldt
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New simulation:
Kinematic reach
and sys+stat errors
for eRHIC

EIC WP:
Saturation
predicts 
characteristic
A dependence.
Systematic 
error dominates



eA at EIC: Unique Key Measurements (II)
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Clear saturation/CGC signatures such as di-hadron correlations 
in a background free environment with access to the relevant 

kinematic variables

frag
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u
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e+Au - sat

e+Au - nosat

1 < Q2 < 2 GeV2
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New simulation:
Now include Sudakov form factor to account for generated radiation 
through parton showers. Difference between sat and no-sat gets smaller 
but still significant. Include Kinematics and sys+stat errors for eRHIC.



eA at EIC: Unique Key Measurements (III)
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Day-1 measurements that will give clear evidence for saturation 
such as differential σdiffractive/σdiffractive ratio

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

β

-110 1 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Mx2
 (GeV2)

Q2 = 1 GeV2
x = 1×10-3

eRHIC 15x100 GeV
∫Ldt = 1 fb-1/A 

ra
tio

 (e
Au

/e
p)

(1
/σ

to
t) 

 dσ
dif

f/d
M

x2 (G
eV

-2
)

eAu - Saturation Model
ep - Saturation Model

saturation model

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

β

Mx2
 (GeV2)

Q2 = 5 GeV2
x = 1×10-3

eRHIC 15x100 GeV
∫Ldt = 1 fb-1/A 

ra
tio

 (e
Au

/e
p)

(1
/σ

to
t) 

 dσ
dif

f/d
M

x2 (G
eV

-2
) eAu - Saturation Model

ep - Saturation Model
eAu - Shadowing Model (LTS)
ep - Shadowing  Model (LTS)

-110 1 10
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

shadowing model (LTS)

saturation model

New simulation:
Saturation model calculations (Sartre event generator & analytic) now 
includeqqg that affect the ratio at low β. Now confirm observation in arXiv:
0805.4809 of enhancement of double-ratio at large  β and suppression at 
low β. Sat-simulations describe HERA results in ep.

no LTS prediction
at Q2=1 GeV2
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Measurement of diffractive vector meson production that allows 
to study the spatial gluon distribution in nuclei
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∫Ldt = 10 fb-1/A
1 < Q2 < 10 GeV2
x < 0.01
|η(edecay)| < 4
p(edecay) > 1 GeV/c
δt/t = 5%

∫Ldt = 10 fb-1/A
1 < Q2 < 10 GeV2
x < 0.01
|η(Kdecay)| < 4
p(Kdecay) > 1 GeV/c
δt/t = 5%
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New studies:
Proof that source distribution 
F(bT) can be obtained by 
Fourier transformation of 
dσ/dt.
Encouraging results: Already 
for |t| < 0.1 GeV2

input distribution can be 
extracted with surprising 
precision (PRC C87, 024913)

Critical: Separation of 
coherent and incoherent part
through detection of breakup n 
(ZDC) and optionally charged 
fragments in forward detectors 
(Roman Pots). Simulations 
show it works!
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• The e+A program at an EIC is unprecedented, allowing the 
study of  matter in a new regime where physics is not 
described by “ordinary”  QCD
‣ non-linear QCD/saturation/higher twist effects, 

‣ properties of glue (momentum & space-time)
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anticipated

‣ e+A at EIC might at the end be necesary to understand 
not only A+A but also p+A
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• The e+A program at an EIC is unprecedented, allowing the 
study of  matter in a new regime where physics is not 
described by “ordinary”  QCD
‣ non-linear QCD/saturation/higher twist effects, 

‣ properties of glue (momentum & space-time)

• Exciting results at LHC and RHIC in p+A but also new 
complications in p+A studies at RHIC and LHC 
‣ collective effects indicate contribution from final state

‣ key measurement of saturation not as clean-cut as 
anticipated

‣ e+A at EIC might at the end be necesary to understand 
not only A+A but also p+A

• Steady progress in studies of key measurements in e+A


